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Like in other eukaryotic organisms, mitogen-activated protein (MAP) kinase cascades play

important roles in response to host and environmental signals in fungal pathogens. In general,

mitogen-activated protein kinase (MAPK) is activated by phosphorylation at the well-con-

served threonine-x-tyrosine (TXY) motif by mitogen-activated protein kinase (MEK), which

is in turn activated by mitogen-activated protein kinase (MEKK). The budding yeast Saccharo-
myces cerevisiae has five MAPK pathways that regulate mating, invasive growth, cell wall integ-

rity, osmoregulation, and ascospore formation. Except for ascosporogenesis-specific MAPK

sporulation-specific mitogen-activated protein kinase (Smk1), other yeast MAPKs are con-

served in plant-pathogenic ascomycetes to regulate different infection and developmental pro-

cesses, which is the focus of this review. In phytopathogenic basidiomycetes, MAPKs have

only been well characterized in Ustilago maydis.

The Fus3/Kss1 orthologs regulate appressorium formation and

other infection processes

Most filamentous ascomycetes have only one ortholog of yeast Fus3 and Kss1 MAPKs that

function downstream from Ste11–Ste7 in the pheromone response and filamentation path-

ways. In over 20 plant pathogenic fungi characterized, this MAPK is important for plant infec-

tion [1,2]. In the rice blast fungus Magnaporthe oryzae, pathogenicity MAP kinase 1 (PMK1)

is essential for appressorium formation and invasive growth (Fig 1A). Its ortholog is also re-

quired for appressorium formation in all the other appressorium-forming pathogens studied

(Table 1). Expression of its orthologs from fungi such as Colletotrichum lagenarium and Pucci-
nia striiformis rescues the appressorium formation defect of pmk1 mutant, indicating the well-

conserved nature of this MAPK (S1 Table). In non-appressorium-forming pathogens, this

pathway is also important for plant penetration and infectious growth in various fungi, such as

biotrophic Claviceps purpurea, hemibiotrophic Mycosphaerella graminicola, and necrotrophic

Stagonospora nodorum [1,2]. kss1 mutants of the multihost pathogen Fusarium oxysporum are

nonpathogenic on tomato plants but fully pathogenic in a murine model system [3], indicating

that this MAPK plays different roles in plant and animal pathogenesis. In U. maydis, although

Kpp6 plays a more important role in appressorium penetration than Kpp2, both kpp2 and

kpp6 mutants are attenuated in virulence, and kpp2 kpp6 double mutants are nonpathogenic

[4]. Another putative MAPK, Crk1, that was first identified as a homolog of yeast Ime2 also

regulates morphogenesis and plant infection in U. maydis [5].

Unlike its conserved role in pathogenesis, the functions of this MAPK in other development

processes vary among different fungi [1,2]. For example, the Fus3 ortholog is important for

deoxynivalenol production in F. graminearum and fumonisin biosynthesis in F. verticillioides,
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indicating a regulatory role in secondary metabolism. Whereas this MAPK is important for

conidiation in Alternaria brassicicola and conidium germination in C. lagenarium, its ortholog

regulates pycnidium formation and sclerotium development in M. graminicola and Sclerotinia
sclerotiorum (S1 Table). In A. alternata, AsFus3 is important for conidiation and copper fungi-

cide resistance.

In M. oryzae, Pmk1 is activated by its upstream MEK Mst7 and MEKK Mst11 (Fig 1B).

Without a yeast Ste5 ortholog, Mst50 functions as an adaptor protein for the Mst11-Mst7

interaction, but Mst7 interacts with Pmk1 via its MAPK-docking site [1]. The formation of

Mst7 homodimers involves the thioredoxins and is important for Pmk1 activation [6]. Besides

its intramolecular self-inhibitory binding, Mst11 also interacts with Ras proteins via the Ras-

Fig 1. The Pmk1 and Mps1 pathways and their relationship with cAMP signaling in Magnaporthe oryzae. A.

Distinct and overlapping functions of the cAMP-PKA pathway and Pmk1 and Mps1 MAPK cascades during plant

infection. B. Physical and chemical signals known to trigger appressorium formation include surface hydrophobicity

and hardness, cutin monomers, plant surface waxes, and primary alcohols. Msb2, Sho1, Pth11, and Cbp1 are involved

in recognizing extracellular or surface signals to activate the downstream cAMP-PKA pathway and Mst11-Mst7-Pmk1

MAPK cascade. Both the trimeric G-proteins and Ras monomeric G-proteins are functionally related to these two

pathways that regulate appressorium formation, penetration, and invasive growth. Although its upstream sensors have

not been characterized, the Bck1-Mkk2-Mps1 cascade likely functions downstream from PKC and is important for

sporulation, appressorium penetration, and pathogenesis via downstream Mig1, Swi6, and possibly other transcription

factors. The adapter protein Mst50 is involved in both Pmk1 and Mps1 pathways. Mip11 is a RACK protein that

interacts with both Mst50 and Mck1. Pmk1 positively regulates Mst12, Mcm1, Sfl1, and likely other transcription

factors during different infection processes. Together with the Cyc8-Tup1 corepressor complex, Sfl1 also functions as a

transcriptional repressor for hyphal growth. cAMP, cyclic adenosine monophosphate; MAPK, MAP kinase; PKA,

protein kinase A; PKC, protein kinase C; RACK, receptor for activated C kinase.

https://doi.org/10.1371/journal.ppat.1006875.g001

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006875 March 15, 2018 2 / 8

https://doi.org/10.1371/journal.ppat.1006875.g001
https://doi.org/10.1371/journal.ppat.1006875


association domain for Pmk1 activation [7,8]. Upstream components of this MAPK pathway

also have been characterized in other fungal pathogens [1,9]. In U. maydis, the Ste50 ortholog

Ubc2 functions as an adaptor protein for the Kpp4–Fuz7–Kpp2/Kpp6 cascade [10]. Orthologs

of Ste12, a downstream transcription factor of yeast Fus3 and Kss1, also play a critical role in

development and pathogenesis in fungal pathogens [1]. In M. oryzae and C. lagenarium, dele-

tion of Ste12 ortholog results in the loss of pathogenicity and defects in appressorium

penetration.

The Slt2 cell wall integrity pathway also has a conserved role in

pathogenesis

The MAPK cascade orthologous to the yeast Bck1–Mkk1/Mkk2–Slt2 is conserved in filamen-

tous ascomycetes to regulate cell wall integrity (CWI) and pathogenesis [1,2]. In M. oryzae,
Mps1 is essential for plant infection, and mps1 mutant is defective in appressorium penetra-

tion. Expression of HopAI, a Pseudomonas MAPK–inactivating effector, strongly affects Mps1

phosphorylation and virulence [11]. The CWI MAPK pathway is also important for pathogen-

esis in other plant pathogens (Table 1). However, its role in appressorium formation or initial

Table 1. MAP kinases characterized in plant pathogenic fungi.

Fungal species Orthologs of yeast

Fus3/Kss1 Slt2 Hog1

Alternaria alternata� Fus3 Slt2

A. brassicicola� Amk1

Bipolaris oryzae Bmk1 Srm1

Blumeria graminis� Mpk1

Botrytis cinerea� Bmp1 Bmp3 Sak1

Claviceps purpurea Cpmk1

Cochliobolus heterostrophus� Chk1

Cochliobolus sativus� Fus3 Slt2 Cshog1

Colletotrichum gloeosporioides� CgMk1 Cgl-Slt2

Colletotrichum higginsianum� ChMK1

Colletotrichum lagenarium� Cmk1 Maf1

Colletotrichum orbiculare� Osc1

Fusarium graminearum Gpmk1 Mgv1 FgHog1

F. oxysporum Fmk1 Mpk1

F. verticillioides Mk1

Heterobasidion annosum HaHog1

Magnaporthe oryzae� Pmk1 Mps1 Osm1

Mycosphaerella graminicola Fus3 MgSlt2 MgHog1

Puccinia striiformis Mapk1

Pyrenophora teres� Ptk1

Sclerotinia sclerotiorum� Smk1 Smk3

Setosphaeria turcica� Stk2

Stagonospora nodorum Mak2

Ustilaginoidea virens UvHog1

Ustilago maydis Kpp2 Kpp6 UmHog1

Verticillium dahliae� Vmk1 VdHog1

� Pathogens that form appressoria during plant infection.

Abbreviations: MAP, mitogen-activated protein.

https://doi.org/10.1371/journal.ppat.1006875.t001
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penetration varies among different fungi. Although its ortholog is important for early stages of

appressorium development in C. lagenarium and Colletotrichum gloeosporioides, Mps1 is dis-

pensable for appressorium formation in M. oryzae. In M. graminicola, MgSlt2 mutant is nor-

mal in stomata penetration but defective in developing invasive hyphae.

Beside their conserved roles in infection and cell wall integrity, Slt2 orthologs also are

involved in regulating different biological processes in plant pathogenic fungi. For example,

the mps1 mutant is normal in growth rate but has severe defects in aerial hyphal growth and

conidiation in M. oryzae. In S. sclerotiorum, smk3 mutant is reduced in sclerotium formation

but increased in aerial hyphal growth [12]. Whereas M. graminicola Mgslt2 mutant is hyper-

sensitive to azole fungicides, Botrytis cinerea bmp3 mutant has increased sensitivity to paraquat

and fludioxonil (S1 Table).

A number of upstream and downstream components of the CWI pathway have been func-

tionally characterized in M. oryzae, F. graminearum, and other fungi [1,9]. Whereas most plant

pathogens have a single MAPK, MEK, and MEKK, a species-specific duplication of the MEKK

is observed in F. oxysporum and two rust fungi. The bck1 mutant of Cryphonectria parasitica
has severe growth defects and often produces fast-growing sectors although the underlying

mechanism is not clear [13]. For the downstream targets of the CWI MAPK cascade, the

orthologs of yeast Rlm1 and Swi6 are conserved in filamentous ascomycetes. In M. oryzae, the

mig1 mutant deleted of the MCM1/AGAMOUS/DEFICIENS/SRF (MADS) box transcription

factor orthologous to Rlm1 is normal in vegetative growth and the formation of melanized

appressoria but defective in the differentiation and growth of invasive hyphae. The Moswi6
mutant deleted of the transcriptional regulator orthologous to yeast Swi6 is defective in cell

wall integrity, hyphal growth, and appressorium penetration [1].

The osmoregulation pathway plays a species-specific role in

pathogenesis

Unlike the other two MAPKs with the threonine-glutamate-tyrosine (TEY) phosphorylation

sites, the Hog1 or OS-2 ortholog with the threonine-glycine-tyrosine (TGY) phosphorylation

sites is not important for pathogenesis in all the plant pathogenic fungi (Fig 2). In M. oryzae,
Osm1 is dispensable for appressorium turgor generation and pathogenesis. Hog1 ortholog is

also dispensable for plant infection in Cochliobolus orbiculare and Bipolaris oryzae [1,2]. How-

ever, mutants blocked in this pathway are defective in plant infection in B. cinerea, M. gramini-
cola, and other fungi (S1 Table). Whereas Mghog1 mutant is nonpathogenic and defective in

the yeast-like-to-hyphal growth switch in M. graminicola, deletion of this MAPK reduces the

production of phytotoxic metabolites in F. graminearum and Ustilaginoidea virens [1,14]. The

Cochliobolus sativus Cshog1 mutant is normal in root infection but significantly reduced in vir-

ulence on barley leaves [15]. Therefore, the function of this MAPK pathway in pathogenesis

may be not only species-specific but also tissue-specific.

In phytopathogenic fungi, the Hog1 pathway also plays a species-specific role in growth

and development, such as the regulation of perithecium formation in F. graminearum and

microsclerotium formation in Verticillium dahliae (S1 Table). In B. cinerea, Sak1 positively

controls conidiation but negatively regulates sclerotium development. Nevertheless, in general,

this TGY MAPK is important for oxidative stress and responsible for sensitivity to phenylpyr-

role fungicides, although its role in response to cell wall and other stresses may vary among dif-

ferent fungi. The upstream MEK and MEKK and downstream transcription factors of the

Hog1 pathway also have been characterized in several fungal pathogens [1,2,16]. Deletion of

FgPbs2 and FgSsk22 results in the same defects as Fgos2 mutant in F. graminearum [9], in

which the ATF/CREB transcription factor FgAtf1 interacts with FgOs2 in the nucleus under
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osmotic stress and constitutive expression of FgATF1 almost fully complements Fgos2 defects

in osmoregulation and pathogenesis [17].

Upstream receptors or sensors

Unlike plants and animals, fungi lack receptor kinases or receptor-like kinases. However, in

comparison with yeast, G-protein–coupled receptor (GPCR) genes are expanded in plant

pathogens, such as 76 and 116 putative GPCR genes in M. oryzae and F. graminearum, respec-

tively. In M. oryzae, Pth11, a noncanonical GPCR with the CFEM motif, is involved in surface

recognition for appressorium formation [18]. It is internalized and transported to dynamic

tubulovesicular endosomal compartments with its downstream signaling components [1,19].

In plant pathogens, CFEM domain–containing GPCRs are often induced during plant infec-

tion [20]. In F. oxysporum, the ortholog of yeast Ste2 pheromone receptor appears to be

involved in the sensing of α-pheromone, peroxidase, and other host compounds [21]. How-

ever, deletion of Ste2 ortholog has no obvious effect on virulence.

The other two receptor-like genes functioning upstream from MAPK pathways in plant

pathogens are orthologous to yeast Msb2 and Sho1 [1,2]. In U. maydis and F. oxysporum,

Msb2 plays a major and Sho1 plays a minor role in activating downstream MAPKs and patho-

genesis. In M. oryzae, the Momsb2 Mosho1 mutant rarely forms appressoria on artificial hydro-

phobic surfaces but still develops appressoria in response to plant surface waxes and primary

alcohols. MoMsb2 is functionally related to another mucin-like protein, MoCbp1, because

Momsb2 Mocbp1 mutant is defective in Pmk1 activation and non-pathogenic [22]. The Msb2

ortholog is also important for plant infection in V. dahliae but not in B. cinerea, although

Bmp1 MAPK is activated in a Msb2-dependent manner [23].

No receptors have been characterized for the CWI pathway in plant pathogenic fungi,

although they have Wsc1 and Mid1 homologs. In contrast, components of the two-component

Fig 2. Functional diversity of the HOG pathway in yeast and plant-pathogenic fungi. Schematic model of the HOG

pathway that is mainly involved in hyperosmoregulation in S. cerevisiae. Although lacking redundant MEK kinases,

filamentous ascomycetes generally have orthologs of all these conserved components of the Hog1 pathway, including

MEKK, MEK, and upstream phosphorelay and sensor proteins. Besides its conserved role in osmoregulation, this

pathway has species-specific functions in pathogenesis, vegetative growth, fungicide sensitivity, sexual and asexual

development, and responses to oxidative, cell wall, and other stresses in different plant pathogenic fungi. Filled and

empty circles indicate that the Hog1/OS-2 kinase is important or dispensable, respectively, for specific functions

characterized in different fungi. HOG, high-osmolarity glycerol; MEK, MAPK kinase; MEKK, MEK kinase.

https://doi.org/10.1371/journal.ppat.1006875.g002
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phosphorelay system upstream from the Hog1 cascade have been characterized in several fun-

gal pathogens [1,2]. In M. oryzae, the two histidine kinases—MoSln1 and MoHik1—differ in

sensing salt and sugar stresses, but both of them are important for full virulence. MoYpd1, the

only intermediate signal transfer protein, is important for pathogenesis and hyperactivation of

Osm1 in response to fungicides and osmotic stress.

Cross-talking among different MAPK pathways

In Cochliobolus heterostrophus, Chk1 and Mps1 coregulate several downstream targets, such as

the Colletotrichum melanin regulation (CMR1) transcription factor and melanin biosynthesis

genes. Hog1 plays an opposite role in the regulation of some Chk1 targets, although it has over-

lapping functions with Chk1 during plant infection [24]. In F. oxysporum, both Fmk1 and

Mpk1 regulate responses to cell wall and heat stresses, and Hog1 likely negatively controls the

activation of Fmk1 and Mpk1 [25]. In M. oryzae, besides its role in the Pmk1 pathway, Mst50

interacts with Mck1 and Mkk2, and the mst50 mutant is defective in Mps1 phosphorylation

under cell wall stress. Deletion of MST50 also affects Osm1 activation in response to hyperos-

motic stress, and Hik1 interacts with Mst50 [26].

Because the cyclic adenosine monophosphate–protein kinase A (cAMP-PKA) pathway

also regulates various developmental and infection processes, cross-talking between cyclic

adenosine monophosphate (cAMP) signaling and MAPK cascades must occur and likely

involve different mechanisms in plant pathogenic fungi [1,2,27]. In S. cerevisiae, inhibition of

β-1,3-glucan synthesis led to the activation of the CWI pathway and suppression of protein

kinase A (PKA) signaling [28]. In U. maydis, the Prf1 transcription factor functions down-

stream from both the cAMP-PKA and MAPK pathways. In M. oryzae, MoRas2 functions

upstream from both cAMP signaling and Pmk1 cascade (Fig 1B). Loss-of-function mutations

in MoSfl1, a Pmk1-interacting transcription factor, suppress the growth defects of cpkA cpk2
mutant [29].

Overall, plant pathogenic fungi must properly respond to host and environmental signals

throughout the infection cycle. Further characterization of cross-talking among MAPK cas-

cades or their relationships with other signaling pathways will lead to better understanding of

the regulatory network involved in the regulation of different infection processes. Another

important area is to identify and characterize the upstream receptors by systematic characteri-

zation of GPCRs. The expansion of GPCR genes in plant pathogenic fungi strongly suggests

their importance for the recognition of extracellular cues, although many of them may have

overlapping functions. Furthermore, MAPK pathways may regulate other biological processes

that have not been well studied in plant pathogens, such as response to volatile signals.
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